Search results
Results from the WOW.Com Content Network
In statistics, homogeneity and its opposite, heterogeneity, arise in describing the properties of a dataset, or several datasets. They relate to the validity of the often convenient assumption that the statistical properties of any one part of an overall dataset are the same as any other part.
The complementary notion is called heteroscedasticity, also known as heterogeneity of variance. The spellings homos k edasticity and heteros k edasticity are also frequently used. “Skedasticity” comes from the Ancient Greek word “skedánnymi”, meaning “to scatter”.
A literature search often involves time series, cross-sectional, or panel data. Cross-panel data (CPD) is an innovative yet underappreciated source of information in the mathematical and statistical sciences. CPD stands out from other research methods because it vividly illustrates how independent and dependent variables may shift between ...
Exclusion criteria concern properties of the study sample, defining reasons for which patients from the target population are to be excluded from the current study sample. Typical exclusion criteria are defined for either ethical reasons (e.g., children, pregnant women, patients with psychological illnesses, patients who are not able or willing ...
Statistical testing for a non-zero heterogeneity variance is often done based on Cochran's Q [13] or related test procedures. This common procedure however is questionable for several reasons, namely, the low power of such tests [14] especially in the very common case of only few estimates being combined in the analysis, [15] [7] as well as the specification of homogeneity as the null ...
Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...
The small N problem arises when the number of units of analysis (e.g. countries) available is inherently limited. For example: a study where countries are the unit of analysis is limited in that are only a limited number of countries in the world (less than 200), less than necessary for some (probabilistic) statistical techniques.
So in this type of sampling, we select samples that have a particular process, examples, categories and even types that are relevant to the ideal or wider universe. One of the most commonly given example is of discourse analysis of gender. The sample relevant units in qualitative research are very often viewed as theoretically defined.