Search results
Results from the WOW.Com Content Network
An unnatural base pair (UBP) is a designed subunit (or nucleobase) of DNA which is created in a laboratory and does not occur in nature. DNA sequences have been described which use newly created nucleobases to form a third base pair, in addition to the two base pairs found in nature, A-T (adenine – thymine) and G-C (guanine – cytosine).
In biotechnology, the principle of base pair complementarity allows the generation of DNA hybrids between RNA and DNA, and opens the door to modern tools such as cDNA libraries. While most complementarity is seen between two separate strings of DNA or RNA, it is also possible for a sequence to have internal complementarity resulting in the ...
Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).
The following table is a representative sample of Erwin Chargaff's 1952 data, listing the base composition of DNA from various organisms and support both of Chargaff's rules. [14] An organism such as φX174 with significant variation from A/T and G/C equal to one, is indicative of single stranded DNA.
Base pairing: Two base pairs are produced by four nucleotide monomers, nucleobases are in blue. Guanine (G) is paired with cytosine (C) via three hydrogen bonds, in red. Adenine (A) is paired with uracil (U) via two hydrogen bonds, in red. Purine nucleobases are fused-ring molecules. Pyrimidine nucleobases are simple ring molecules.
Some DNA- or RNA-binding enzymes can recognize specific base pairing patterns that identify particular regulatory regions of genes. Hydrogen bonding is the chemical mechanism that underlies the base-pairing rules described above. Appropriate geometrical correspondence of hydrogen bond donors and acceptors allows only the "right" pairs to form ...
Watson-Crick base pairs in a siRNA. Hydrogen atoms are not shown. Each nucleotide in RNA contains a ribose sugar, with carbons numbered 1' through 5'. A base is attached to the 1' position, in general, adenine (A), cytosine (C), guanine (G), or uracil (U). Adenine and guanine are purines, and cytosine and uracil are pyrimidines.
It is, however, not so simple for single stranded folded functional RNA molecules. Several algorithms have been implemented in software tools for the automated detection of base pairs in RNA structures solved by X-ray crystallography, NMR or other methods. Essentially the programs detect hydrogen bonds between two bases, and ensure their (near ...