Search results
Results from the WOW.Com Content Network
A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n , then the probability that it moves to state x at time n + 1 depends only on the ...
A Markov chain is a type of Markov process that has either a discrete state space or a discrete index set (often representing time), but the precise definition of a Markov chain varies. [6] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless ...
Markov-chains have been used as a forecasting methods for several topics, for example price trends, [8] wind power [9] and solar irradiance. [10] The Markov-chain forecasting models utilize a variety of different settings, from discretizing the time-series [ 9 ] to hidden Markov-models combined with wavelets [ 8 ] and the Markov-chain mixture ...
A (finite) drunkard's walk is an example of an absorbing Markov chain. [1] In the mathematical theory of probability, an absorbing Markov chain is a Markov chain in which every state can reach an absorbing state. An absorbing state is a state that, once entered, cannot be left.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.
A Markov chain is a type of Markov process that has either discrete state space or discrete index set (often representing time), but the precise definition of a Markov chain varies. [196] For example, it is common to define a Markov chain as a Markov process in either discrete or continuous time with a countable state space (thus regardless of ...
In probability theory, the mixing time of a Markov chain is the time until the Markov chain is "close" to its steady state distribution.. More precisely, a fundamental result about Markov chains is that a finite state irreducible aperiodic chain has a unique stationary distribution π and, regardless of the initial state, the time-t distribution of the chain converges to π as t tends to infinity.