enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Big data - Wikipedia

    en.wikipedia.org/wiki/Big_data

    Big data "size" is a constantly moving target; as of 2012 ranging from a few dozen terabytes to many zettabytes of data. [26] Big data requires a set of techniques and technologies with new forms of integration to reveal insights from data-sets that are diverse, complex, and of a massive scale. [27]

  3. Big data maturity model - Wikipedia

    en.wikipedia.org/wiki/Big_Data_Maturity_Model

    The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:

  4. Data management - Wikipedia

    en.wikipedia.org/wiki/Data_management

    Therefore, modern organizations are using big data analytics to identify 5 to 10 new data sources that can help them collect and analyze data for improved decision-making. Jonsen (2013) explains that organizations using average analytics technologies are 20% more likely to gain higher returns compared to their competitors who have not ...

  5. Big data ethics - Wikipedia

    en.wikipedia.org/wiki/Big_data_ethics

    Big data ethics, also known simply as data ethics, refers to systemizing, defending, and recommending concepts of right and wrong conduct in relation to data, in particular personal data. [1] Since the dawn of the Internet the sheer quantity and quality of data has dramatically increased and is continuing to do so exponentially.

  6. Data technology - Wikipedia

    en.wikipedia.org/wiki/Data_technology

    The big data market is expected to reach $156.72 billion by 2026. [8] Spendings on data, including data technologies, in digital marketing reach $26.0 B in 2019 globally. [9] [10] Data technologies are developed to help manage data generated by human or by machines, which will be 200 billion by 2020. [11]

  7. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]

  8. Continuous analytics - Wikipedia

    en.wikipedia.org/wiki/Continuous_analytics

    Analytics is the application of mathematics and statistics to big data. Data scientists write analytics programs to look for solutions to business problems, like forecasting demand or setting an optimal price. The continuous approach runs multiple stateless engines which concurrently enrich, aggregate, infer and act on the data.

  9. Programming with Big Data in R - Wikipedia

    en.wikipedia.org/wiki/Programming_with_Big_Data_in_R

    Programming with Big Data in R (pbdR) [1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation. [ 2 ] [ 3 ] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical ...