enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Karplus equation - Wikipedia

    en.wikipedia.org/wiki/Karplus_equation

    where J is the 3 J coupling constant, is the dihedral angle, and A, B, and C are empirically derived parameters whose values depend on the atoms and substituents involved. [3] The relationship may be expressed in a variety of equivalent ways e.g. involving cos 2φ rather than cos 2 φ —these lead to different numerical values of A , B , and C ...

  3. Coupling constant - Wikipedia

    en.wikipedia.org/wiki/Coupling_constant

    A coupling plays an important role in dynamics. For example, one often sets up hierarchies of approximation based on the importance of various coupling constants. In the motion of a large lump of magnetized iron, the magnetic forces may be more important than the gravitational forces because of the relative magnitudes of the coupling constants.

  4. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Coupling constants for these protons are often as large as 200 Hz, for example, in diethylphosphine, where the 1J P−H coupling constant is 190 Hz. [6] These coupling constants are so large that they may span distances in excess of 1 ppm (depending on the spectrometer), making them prone to overlapping with other proton signals in the molecule.

  5. J-coupling - Wikipedia

    en.wikipedia.org/wiki/J-coupling

    Example 1 H NMR spectrum (1-dimensional) of ethanol plotted as signal intensity vs. chemical shift.There are three different types of H atoms in ethanol regarding NMR. The hydrogen (H) on the −OH group is not coupling with the other H atoms and appears as a singlet, but the CH 3 − and the −CH 2 − hydrogens are coupling with each other, resulting in a triplet and quartet respectively.

  6. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    In the context of nuclear magnetic resonance (NMR), the term magnetic inequivalence refers to the distinction between magnetically active nuclear spins by their NMR signals, owing to a difference in either chemical shift (magnetic inequivalence by the chemical shift criterion) or spin–spin coupling (magnetic inequivalence by the coupling criterion).

  7. Magnetic dipole–dipole interaction - Wikipedia

    en.wikipedia.org/wiki/Magnetic_dipole–dipole...

    For example, in water, NMR spectra of hydrogen atoms of water molecules are narrow lines because dipole coupling is averaged due to chaotic molecular motion. [1] In solids, where water molecules are fixed in their positions and do not participate in the diffusion mobility, the corresponding NMR spectra have the form of the Pake doublet. In ...

  8. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    The advantage of a COSY-45 is that the diagonal-peaks are less pronounced, making it simpler to match cross-peaks near the diagonal in a large molecule. Additionally, the relative signs of the coupling constants (see J-coupling#Magnitude of J-coupling) can be elucidated from a COSY-45 spectrum.

  9. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    Perhaps the most direct measurement of s character in a bonding orbital between hydrogen and carbon is via the 1 H− 13 C coupling constants determined from NMR spectra. Theory predicts that J CH values correlates with s character. [24]