enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anabolism - Wikipedia

    en.wikipedia.org/wiki/Anabolism

    High amounts of ATP cause cells to favor the anabolic pathway and slow catabolic activity, while excess ADP slows anabolism and favors catabolism. [10] These pathways are also regulated by circadian rhythms , with processes such as glycolysis fluctuating to match an animal's normal periods of activity throughout the day.

  3. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The degradative process of a catabolic pathway provides the energy required to conduct the biosynthesis of an anabolic pathway. [6] In addition to the two distinct metabolic pathways is the amphibolic pathway, which can be either catabolic or anabolic based on the need for or the availability of energy.

  4. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    Futile cycles occur when the catabolic and anabolic pathways are both in effect at the same time and rate for the same reaction. Since the intermediates being created are consumed, the body makes no net gain. Energy is lost through futile cycles.

  5. Catabolism - Wikipedia

    en.wikipedia.org/wiki/Catabolism

    Catabolism (/ k ə ˈ t æ b ə l ɪ z ə m /) is the set of metabolic pathways that breaks down molecules into smaller units that are either oxidized to release energy or used in other anabolic reactions. [1]

  6. Fatty acid metabolism - Wikipedia

    en.wikipedia.org/wiki/Fatty_acid_metabolism

    These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds. [1] In catabolism, fatty acids are metabolized to produce energy, mainly in the form of adenosine triphosphate (ATP).

  7. Amphibolic - Wikipedia

    en.wikipedia.org/wiki/Amphibolic

    The cell determines whether the amphibolic pathway will function as an anabolic or catabolic pathway by enzyme–mediated regulation at a transcriptional and post-transcriptional level. As many reactions in amphibolic pathways are freely reversible or can be bypassed, irreversible steps that facilitate their dual function are necessary.

  8. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions.

  9. Pentose phosphate pathway - Wikipedia

    en.wikipedia.org/wiki/Pentose_phosphate_pathway

    While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3] There are two distinct phases in the pathway.