Search results
Results from the WOW.Com Content Network
Informally, a measure has the property of being monotone in the sense that if is a subset of , the measure of is less than or equal to the measure of . Furthermore, the measure of the empty set is required to be 0. A simple example is a volume (how big an object occupies a space) as a measure.
Lander, Parkin, and Selfridge conjecture: if the sum of -th powers of positive integers is equal to a different sum of -th powers of positive integers, then +. Lemoine's conjecture : all odd integers greater than 5 {\displaystyle 5} can be represented as the sum of an odd prime number and an even semiprime .
For larger scales the sum of the angles of a triangle is not equal to 180°. Geometry is one of the oldest branches of mathematics. It started with empirical recipes concerning shapes, such as lines , angles and circles , which were developed mainly for the needs of surveying and architecture , but has since blossomed out into many other subfields.
Indeed, as stated above, the -th Fibonacci number equals the number of combinatorial compositions (ordered partitions) of using terms 1 and 2. It follows that the ordinary generating function of the Fibonacci sequence, ∑ i = 0 ∞ F i z i {\displaystyle \sum _{i=0}^{\infty }F_{i}z^{i}} , is the rational function z 1 − z − z 2 ...
In a third layer, the logarithms of rational numbers r = a / b are computed with ln(r) = ln(a) − ln(b), and logarithms of roots via ln n √ c = 1 / n ln(c).. The logarithm of 2 is useful in the sense that the powers of 2 are rather densely distributed; finding powers 2 i close to powers b j of other numbers b is comparatively easy, and series representations of ln(b) are ...
As individual terms of this infinite series are added to the sum, the total gradually gets closer to π, and – with a sufficient number of terms – can get as close to π as desired. It converges quite slowly, though – after 500,000 terms, it produces only five correct decimal digits of π .
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
0 (zero) is a number representing an empty quantity.Adding (or subtracting) 0 to any number leaves that number unchanged; in mathematical terminology, 0 is the additive identity of the integers, rational numbers, real numbers, and complex numbers, as well as other algebraic structures.