enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. File:DeepInsight method to transform non-image data to 2D ...

    en.wikipedia.org/wiki/File:DeepInsight_method_to...

    Here we propose, DeepInsight, which converts non-image samples into a well-organized image-form. Thereby, the power of convolution neural network (CNN), including GPU utilization, can be realized for non-image samples.

  3. AlexNet - Wikipedia

    en.wikipedia.org/wiki/AlexNet

    AlexNet architecture and a possible modification. On the top is half of the original AlexNet (which is split into two halves, one per GPU). On the bottom is the same architecture but with the last "projection" layer replaced by another one that projects to fewer outputs.

  4. Convolutional layer - Wikipedia

    en.wikipedia.org/wiki/Convolutional_layer

    In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.

  5. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Gaussian blur can be used to obtain a smooth grayscale digital image of a halftone print. Convolution and related operations are found in many applications in science, engineering and mathematics. Convolutional neural networks apply multiple cascaded convolution kernels with applications in machine vision and artificial intelligence.

  6. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  7. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.

  8. LeNet - Wikipedia

    en.wikipedia.org/wiki/LeNet

    The first stage scaled, deskewed, and skeletonized the input image. The second stage was a convolutional layer with 18 hand-designed kernels. The third stage was a fully connected network with one hidden layer. The LeNet-1 architecture has 3 hidden layers (H1-H3) and an output layer. [4]

  9. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    It also uses a form of dimension-reduction by concatenating the output from a convolutional layer and a pooling layer. As an example, a tensor of size 35 × 35 × 320 {\displaystyle 35\times 35\times 320} can be downscaled by a convolution with stride 2 to 17 × 17 × 320 {\displaystyle 17\times 17\times 320} , and by maxpooling with pool size ...