enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Symplectic manifold - Wikipedia

    en.wikipedia.org/wiki/Symplectic_manifold

    Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...

  3. Differential topology - Wikipedia

    en.wikipedia.org/wiki/Differential_topology

    In mathematics, differential topology is the field dealing with the topological properties and smooth properties [a] of smooth manifolds.In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape.

  4. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    Such a manifold is called differentiable. Given a differentiable manifold, one can unambiguously define the notion of tangent vectors and then directional derivatives. If each transition function is a smooth map, then the atlas is called a smooth atlas, and the manifold itself is called smooth.

  5. 5-manifold - Wikipedia

    en.wikipedia.org/wiki/5-manifold

    In mathematics, a 5-manifold is a 5-dimensional topological manifold, possibly with a piecewise linear or smooth structure. Non- simply connected 5-manifolds are impossible to classify, as this is harder than solving the word problem for groups . [ 1 ]

  6. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    Let M be a smooth manifold. A (smooth) singular k-simplex in M is defined as a smooth map from the standard simplex in R k to M. The group C k (M, Z) of singular k-chains on M is defined to be the free abelian group on the set of singular k-simplices in M. These groups, together with the boundary map, ∂, define a chain complex.

  7. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    Let be a smooth manifold; a (smooth) distribution assigns to any point a vector subspace in a smooth way. More precisely, consists of a collection {} of vector subspaces with the following property: Around any there exist a neighbourhood and a collection of vector fields, …, such that, for any point , span {(), …, ()} =.

  8. Plumbing (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Plumbing_(mathematics)

    If the base manifold is an n-sphere , then by iterating this procedure over several vector bundles over one can plumb them together according to a tree [3] §8. If T {\displaystyle T} is a tree, we assign to each vertex a vector bundle ξ {\displaystyle \xi } over S n {\displaystyle S^{n}} and we plumb the corresponding disk bundles together if ...

  9. Fundamental vector field - Wikipedia

    en.wikipedia.org/wiki/Fundamental_vector_field

    Important to applications in mathematics and physics [1] is the notion of a flow on a manifold. In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to .