enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    As mentioned above, the cube has eight vertices, twelve edges, and six faces; each element in a matrix's diagonal is denoted as 8, 12, and 6. The first column of the middle row indicates that there are two vertices in (i.e., at the extremes of) each edge, denoted as 2; the middle column of the first row indicates that three edges meet at each ...

  3. 9-cube - Wikipedia

    en.wikipedia.org/wiki/9-cube

    This 9-cube graph is an orthogonal projection. This orientation shows columns of vertices positioned a vertex-edge-vertex distance from one vertex on the left to one vertex on the right, and edges attaching adjacent columns of vertices. The number of vertices in each column represents rows in Pascal's triangle, being 1:9:36:84:126:126:84:36:9:1.

  4. Cuboid - Wikipedia

    en.wikipedia.org/wiki/Cuboid

    Etymologically, "cuboid" means "like a cube", in the sense of a convex solid which can be transformed into a cube (by adjusting the lengths of its edges and the angles between its adjacent faces). A cuboid is a convex polyhedron whose polyhedral graph is the same as that of a cube. [1] [2] General cuboids have many different types.

  5. Chamfer (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chamfer_(geometry)

    The chamfered cube is constructed as a chamfer of a cube: the squares are reduced in size and new faces, hexagons, are added in place of all the original edges. The cC is a convex polyhedron with 32 vertices, 48 edges, and 18 faces: 6 congruent (and regular) squares, and 12 congruent flattened hexagons.

  6. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    For the cube the extended ƒ-vector is (1,8,12,6,1) and for the octahedron it is (1,6,12,8,1). Although the vectors for these example polyhedra are unimodal (the coefficients, taken in left to right order, increase to a maximum and then decrease), there are higher-dimensional polytopes for which this is not true.

  7. Dual polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_polyhedron

    The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]

  8. 8-cube - Wikipedia

    en.wikipedia.org/wiki/8-cube

    In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol {4,3 6}, being composed of 3 7-cubes around each 6-face.

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    The number of vertices, edges, and faces of GP(m,n) can be computed from m and n, with T = m 2 + mn + n 2 = (m + n) 2 − mn, depending on one of three symmetry systems: [1] The number of non-hexagonal faces can be determined using the Euler characteristic, as demonstrated here.