Search results
Results from the WOW.Com Content Network
The structural icing of an aircraft is largely determined by three factors: supercooled liquid water content, which decides how much water is available for icing; air temperature, with half of all reported icing occurring between −8 °C (18 °F) and −12 °C (10 °F); and droplet size, with small droplets influencing aircraft's leading edges ...
The structural icing of an aircraft is largely determined by three factors: supercooled liquid water content, which decides how much water is available for icing; air temperature, with half of all reported icing occurring between −8 °C (18 °F) and −12 °C (10 °F); and droplet size, with small droplets influencing aircraft's leading edges ...
Droplets of supercooled water often exist in stratus and cumulus clouds. An aircraft flying through such a cloud sees an abrupt crystallization of these droplets, which can result in the formation of ice on the aircraft's wings or blockage of its instruments and probes, unless the aircraft is equipped with an appropriate ice protection system.
As the hailstone ascends, it passes into areas of the cloud where the concentration of humidity and supercooled water droplets varies. The hailstone's growth rate changes depending on the variation in humidity and supercooled water droplets that it encounters. The accretion rate of these water droplets is another factor in the hailstone's growth.
Rime ice also forms when ice forms on the surface of an aircraft, particularly on the leading edges and control surfaces when it flies through a cloud made of supercooled water liquid droplets. Rime ice is the least dense, milky ice is intermediately dense and clear ice is the most dense.
The Wegener–Bergeron–Findeisen process (after Alfred Wegener, Tor Bergeron and Walter Findeisen []), (or "cold-rain process") is a process of ice crystal growth that occurs in mixed phase clouds (containing a mixture of supercooled water and ice) in regions where the ambient vapor pressure falls between the saturation vapor pressure over water and the lower saturation vapor pressure over ice.
In clouds warmer than about −37 °C where liquid water can persist in a supercooled state, ice nuclei can trigger droplets to freeze. [ 1 ] Contact nucleation can occur if an ice nucleus collides with a supercooled droplet, but the more important mechanism of freezing is when an ice nucleus becomes immersed in a supercooled water droplet and ...
Snow crystals form when tiny supercooled cloud droplets (about 10 μm in diameter) freeze. These droplets are able to remain liquid at temperatures lower than −18 °C (0 °F), because to freeze, a few molecules in the droplet need to get together by chance to form an arrangement similar to that in an ice lattice.