Search results
Results from the WOW.Com Content Network
In four-stroke cycle engines and some two-stroke cycle engines, the valve timing is controlled by the camshaft. It can be varied by modifying the camshaft, or it can be varied during engine operation by variable valve timing. It is also affected by the adjustment of the valve mechanism, and particularly by the tappet clearance.
When engine speed reaches a certain speed, normally 1500-2000 rpm in the Twin Spark application, the solenoid energises, causing pressurised oil to be directed through the inlet camshaft into the variator. The inlet camshaft position is advanced 25 degrees, thus increasing valve overlap. It remains in this advanced state until about 5000 rpm ...
For twin-cam or DOHC engines, VCT was used on either the intake or exhaust camshaft. (Engines that have VCT on both camshafts are now designated as Ti-VCT.↓) The use of variable camshaft timing on the exhaust camshaft is for improved emissions, and vehicles with VCT on the exhaust camshaft do not require exhaust gas recirculation (EGR) as retarding the exhaust cam timing achieves the same ...
An engine requires large amounts of air when operating at high speeds. However, the intake valves may close before enough air has entered each combustion chamber, reducing performance. On the other hand, if the camshaft keeps the valves open for longer periods of time, as with a racing cam, problems start to occur at the lower engine speeds.
N-VTC varies valve timing by rotating the affected camshaft relative to the sprocket; valve lift and duration are not altered. This rotation is achieved when an electric solenoid, controlled by the car's ECU, allows pressurized engine oil to flow into and through the cam and into a slave mechanism, axially advancing camshaft timing relative to ...
Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The cam can be seen as a device that converts rotational motion to reciprocating (or sometimes oscillating) motion. [clarification needed] [3] A common example is the camshaft of an automobile, which takes the rotary motion of the engine and converts it into the reciprocating motion necessary to operate the intake and exhaust valves of the cylinders.