Search results
Results from the WOW.Com Content Network
If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.
This equation, along with the continuity equation for J and the Poisson's equation for E, form a set of partial differential equations. In special cases, an exact or approximate solution to these equations can be worked out by hand, but for very accurate answers in complex cases, computer methods like finite element analysis may be required.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Joule heating (also known as resistive, resistance, or Ohmic heating) is the process by which the passage of an electric current through a conductor produces heat.. Joule's first law (also just Joule's law), also known in countries of the former USSR as the Joule–Lenz law, [1] states that the power of heating generated by an electrical conductor equals the product of its resistance and the ...
That correspondingly reverses the role of constant-input and constant-output resistance equations. Since the stages do not significantly influence each other's attenuation, the stage order can be chosen arbitrarily. Such reordering can have a significant effect on the input resistance of the constant output resistance attenuator and vice versa.
The Callendar–Van Dusen equation is an equation that describes the relationship between resistance (R) and temperature (T) of platinum resistance thermometers (RTD). As commonly used for commercial applications of RTD thermometers, the relationship between resistance and temperature is given by the following equations.
A generalization of the Landauer formula for multiple terminals is the Landauer–Büttiker formula, [5] [4] proposed by Markus Büttiker [].If terminal has voltage (that is, its chemical potential is and differs from terminal chemical potential), and , is the sum of transmission probabilities from terminal to terminal (note that , may or may not equal , depending on the presence of a magnetic ...
An I–V curve, showing the difference between static resistance (inverse slope of line B) and differential resistance (inverse slope of line C) at a point (A).. The resistance between two terminals of an electrical device or circuit is determined by its current–voltage (I–V) curve (characteristic curve), giving the current through it for any given voltage across it. [18]