Search results
Results from the WOW.Com Content Network
The vertical stabilizer is the fixed vertical surface of the empennage. A vertical stabilizer or tail fin [1] [2] is the static part of the vertical tail of an aircraft. [1] The term is commonly applied to the assembly of both this fixed surface and one or more movable rudders hinged to it. Their role is to provide control, stability and trim ...
The vertical tail structure has a fixed front section called the vertical stabiliser, used to control yaw, which is movement of the fuselage right to left motion of the nose of the aircraft. The rear section of the vertical fin is the rudder , a movable aerofoil that is used to turn the aircraft's nose right or left.
Examples of sideforce-generating surfaces are the vertical stabilizer, rudder, and parts of the fuselage. When an aircraft is in a sideslip, these surfaces generate sidewards lift forces. If the surface is above or below the center of gravity, the sidewards forces generate a rolling moment. This rolling moment caused by sideslip is dihedral ...
The new fuselage section is constructed as a single large component, including the vertical stabilizer. When attached to the existing nose section, the fuselage is 55 feet (16.8 m) long and 9 feet (2.74 m) diameter. The fuselage has upper and lower halves, each with a roughly-oval shape similar to a canoe. The halves are bonded to circular frames.
A Boeing 737 uses an adjustable stabilizer, moved by a jackscrew, to provide the required pitch trim forces. Generic stabilizer illustrated. A horizontal stabilizer is used to maintain the aircraft in longitudinal balance, or trim: [3] it exerts a vertical force at a distance so the summation of pitch moments about the center of gravity is zero. [4]
It may still have a fuselage, vertical tail fin (vertical stabilizer), and/or vertical rudder. Theoretical advantages of the tailless configuration include low parasitic drag as on the Horten H.IV soaring glider and good stealth characteristics as on the Northrop B-2 Spirit bomber. Disadvantages include a potential sensitivity to trim.
To reduce low-frequency reflections from the fuselage and vertical stabilizer, wires were strung horizontally from the nose of the aircraft to the tail, and horizontally from the leading edge to the trailing edge of the vertical stabilizer. Ferrite beads were placed on the wires to tune them to the expected frequencies.
The vertical stabilizer of the Airbus A310-300, first flown in 1985, was the first carbon-fiber primary structure used in a commercial aircraft; composites are increasingly used since in Airbus airliners: the horizontal stabilizer of the A320 in 1987 and A330/A340 in 1994, and the center wing-box and aft fuselage of the A380 in 2005. [3]