Search results
Results from the WOW.Com Content Network
Lexicographic code; List decoding; Locally decodable code; Locally recoverable code; Locally testable code; Long code (mathematics) Longitudinal redundancy check; Low-density parity-check code; Luhn algorithm
The advantage of choosing a primitive polynomial as the generator for a CRC code is that the resulting code has maximal total block length in the sense that all 1-bit errors within that block length have different remainders (also called syndromes) and therefore, since the remainder is a linear function of the block, the code can detect all 2 ...
A code has all-symbol locality and availability if every code symbol can be recovered from disjoint repair sets of other symbols, each set of size at most symbols. Such codes are called ( r , t ) a {\displaystyle (r,t)_{a}} -LRC.
A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.
The actual maximum code rate allowed depends on the error-correcting code used, and may be lower. This is because Shannon's proof was only of existential nature, and did not show how to construct codes that are both optimal and have efficient encoding and decoding algorithms.
The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.
The Damm algorithm is similar to the Verhoeff algorithm.It too will detect all occurrences of the two most frequently appearing types of transcription errors, namely altering a single digit or transposing two adjacent digits (including the transposition of the trailing check digit and the preceding digit).
For example, the widely used (255,223) code can be converted to a (160,128) code by padding the unused portion of the source block with 95 binary zeroes and not transmitting them. At the decoder, the same portion of the block is loaded locally with binary zeroes. The QR code, Ver 3 (29×29) uses interleaved blocks.