enow.com Web Search

  1. Ads

    related to: laplace operators in geometry examples problems

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    Laplace–Beltrami operator, generalization to submanifolds in Euclidean space and Riemannian and pseudo-Riemannian manifold. The Laplacian in differential geometry. The discrete Laplace operator is a finite-difference analog of the continuous Laplacian, defined on graphs and grids.

  3. Laplace's equation - Wikipedia

    en.wikipedia.org/wiki/Laplace's_equation

    In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.

  4. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    On a Riemannian manifold, one can define the conformal Laplacian as an operator on smooth functions; it differs from the Laplace–Beltrami operator by a term involving the scalar curvature of the underlying metric. In dimension n ≥ 3, the conformal Laplacian, denoted L, acts on a smooth function u by

  5. Spectral geometry - Wikipedia

    en.wikipedia.org/wiki/Spectral_geometry

    Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...

  6. Spectral shape analysis - Wikipedia

    en.wikipedia.org/wiki/Spectral_shape_analysis

    Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.

  7. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the conventional normalization of the codifferential assures that the Laplace–de Rham operator is (formally) positive definite, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both ...

  8. Green's function for the three-variable Laplace equation

    en.wikipedia.org/wiki/Green's_function_for_the...

    They have solved numerous problems which exhibit circular cylindrical symmetry employing the toroidal functions. The above expressions for the Green's function for the three-variable Laplace operator are examples of single summation expressions for this Green's function. There are also single-integral expressions for this Green's function.

  9. Liouville's equation - Wikipedia

    en.wikipedia.org/wiki/Liouville's_equation

    In differential geometry, Liouville's equation, named after Joseph Liouville, [1] [2] is the nonlinear partial differential equation satisfied by the conformal factor f of a metric f 2 (dx 2 + dy 2) on a surface of constant Gaussian curvature K: ⁡ =, where ∆ 0 is the flat Laplace operator

  1. Ads

    related to: laplace operators in geometry examples problems