Ads
related to: laplace operators in geometry examples list
Search results
Results from the WOW.Com Content Network
Laplace–Beltrami operator, generalization to submanifolds in Euclidean space and Riemannian and pseudo-Riemannian manifold. The Laplacian in differential geometry. The discrete Laplace operator is a finite-difference analog of the continuous Laplacian, defined on graphs and grids.
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.
On functions, the Laplace–de Rham operator is actually the negative of the Laplace–Beltrami operator, as the conventional normalization of the codifferential assures that the Laplace–de Rham operator is (formally) positive definite, whereas the Laplace–Beltrami operator is typically negative. The sign is merely a convention, and both ...
3.9 Laplace–Beltrami operator. ... This is a list of differential geometry topics. ... Examples hyperbolic space;
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
Spectral shape analysis relies on the spectrum (eigenvalues and/or eigenfunctions) of the Laplace–Beltrami operator to compare and analyze geometric shapes. Since the spectrum of the Laplace–Beltrami operator is invariant under isometries, it is well suited for the analysis or retrieval of non-rigid shapes, i.e. bendable objects such as humans, animals, plants, etc.
This is a list of formulas encountered in Riemannian geometry. Einstein notation is used throughout this article. This article uses the "analyst's" sign convention for Laplacians, except when noted otherwise.
Spectral geometry is a field in mathematics which concerns relationships between geometric structures of manifolds and spectra of canonically defined differential operators. The case of the Laplace–Beltrami operator on a closed Riemannian manifold has been most intensively studied, although other Laplace operators in differential geometry ...
Ads
related to: laplace operators in geometry examples list