Search results
Results from the WOW.Com Content Network
The Fletcher checksum cannot distinguish between blocks of all 0 bits and blocks of all 1 bits. For example, if a 16-bit block in the data word changes from 0x0000 to 0xFFFF, the Fletcher-32 checksum remains the same. This also means a sequence of all 00 bytes has the same checksum as a sequence (of the same size) of all FF bytes.
A checksum is a small-sized block of data derived from another block of digital data for the purpose of detecting errors that may have been introduced during its transmission or storage. By themselves, checksums are often used to verify data integrity but are not relied upon to verify data authenticity .
It worked by breaking up the data to be sent into 128-byte packets, adding a 3-byte header and 1-byte checksum footer, and sending the resulting 132-byte packets out in order. The receiving computer recalculated the checksum from the 128 bytes of data, and if it matched the checksum sent in the footer it sent back an ACK , and if it did not ...
Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash: 32 or 64 bits
Byte order: With multi-byte CRCs, there can be confusion over whether the byte transmitted first (or stored in the lowest-addressed byte of memory) is the least-significant byte (LSB) or the most-significant byte (MSB). For example, some 16-bit CRC schemes swap the bytes of the check value.
Adler-32 is a checksum algorithm written by Mark Adler in 1995, [1] modifying Fletcher's checksum. Compared to a cyclic redundancy check of the same length, it trades reliability for speed. Adler-32 is more reliable than Fletcher-16 , and slightly less reliable than Fletcher-32 .
For example, the SCSI and PCI buses use parity to detect transmission errors, and many microprocessor instruction caches include parity protection. Because the Instruction cache data is just a copy of the main memory , it can be disregarded and refetched if it is found to be corrupted.
A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.