enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principle of minimum energy - Wikipedia

    en.wikipedia.org/wiki/Principle_of_minimum_energy

    The principle of minimum energy is essentially a restatement of the second law of thermodynamics. It states that for a closed system, with constant external parameters and entropy, the internal energy will decrease and approach a minimum value at equilibrium. External parameters generally means the volume, but may include other parameters which ...

  3. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energyfrequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  4. Zero-point energy - Wikipedia

    en.wikipedia.org/wiki/Zero-point_energy

    Planck's radiation equation contained a residual energy factor, one ⁠ hν / 2 ⁠, as an additional term dependent on the frequency ν, which was greater than zero (where h is the Planck constant). It is therefore widely agreed that "Planck's equation marked the birth of the concept of zero-point energy."

  5. Minimum total potential energy principle - Wikipedia

    en.wikipedia.org/wiki/Minimum_total_potential...

    The minimum total potential energy principle is a fundamental concept used in physics and engineering. It dictates that at low temperatures a structure or body shall deform or displace to a position that (locally) minimizes the total potential energy , with the lost potential energy being converted into kinetic energy (specifically heat).

  6. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    This is the most useful form of the second law of thermodynamics in chemistry, where free-energy changes can be calculated from tabulated enthalpies of formation and standard molar entropies of reactants and products. [19] [15] The chemical equilibrium condition at constant T and p without electrical work is dG = 0.

  7. Entropy in thermodynamics and information theory - Wikipedia

    en.wikipedia.org/wiki/Entropy_in_thermodynamics...

    Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.

  8. Arrhenius equation - Wikipedia

    en.wikipedia.org/wiki/Arrhenius_equation

    In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...

  9. Paschen's law - Wikipedia

    en.wikipedia.org/wiki/Paschen's_law

    Energy losses from a greater number of collisions require larger voltages for the electrons to accumulate sufficient energy to ionize many gas molecules, which is required to produce an avalanche breakdown. On the left side of the Paschen minimum, the product is small. The electron mean free path can become long compared to the gap between the ...