Search results
Results from the WOW.Com Content Network
The gene affected is the HPD gene encoding 4-hydroxyphenylpyruvic acid dioxygenase, on chromosome 12q24. [4] It is unusual in that most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Tyrosinemia type III is a rare disorder caused by a deficiency of the enzyme 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), encoded by the gene HPD. [2] This enzyme is abundant in the liver, and smaller amounts are found in the kidneys. It is one of a series of enzymes needed to break down tyrosine.
HPPD also catalyzes the conversion of phenylpyruvate to 2-hydroxyphenylacetate and the conversion of α-ketoisocaproate to β-hydroxy β-methylbutyrate. [2] [3] HPPD is an enzyme that is found in nearly all aerobic forms of life. [4] This reaction shows the conversion of 4-hydroxyphenylpyruvate into homogentisate by HPPD.
4-Hydroxyphenylpyruvic acid (4-HPPA) is an intermediate in the metabolism of the amino acid phenylalanine. The aromatic side chain of phenylalanine is hydroxylated by the enzyme phenylalanine hydroxylase to form tyrosine. The conversion from tyrosine to 4-HPPA is in turn catalyzed by tyrosine aminotransferase. [2]
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme found in both plants and animals, which catalyzes the catabolism of the amino acid tyrosine. [4] Preventing the breakdown of tyrosine has three negative consequences: the excess of tyrosine stunts growth; the plant suffers oxidative damage due to lack of tocopherols (vitamin E); and ...
Aromatic-ring-hydroxylating dioxygenases (ARHD) incorporate two atoms of dioxygen (O 2) into their substrates in the dihydroxylation reaction.The product is (substituted) cis-1,2-dihydroxycyclohexadiene, which is subsequently converted to (substituted) benzene glycol by a cis-diol dehydrogenase.
A scary, sobering look at fatal domestic violence in the United States
Phenylpyruvate tautomerase has also been found to exhibit the same keto-enol tautomerism for 4-Hydroxyphenylpyruvic acid, which is structurally similar to phenylpyruvate but contains an additional hydroxyl moiety in the para position of the aromatic ring.