enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Atomic form factor - Wikipedia

    en.wikipedia.org/wiki/Atomic_form_factor

    X-ray atomic form factors of oxygen (blue), chlorine (green), Cl − (magenta), and K + (red); smaller charge distributions have a wider form factor.. In physics, the atomic form factor, or atomic scattering factor, is a measure of the scattering amplitude of a wave by an isolated atom.

  3. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    A powder X-ray diffractometer in motion. X-ray crystallography is the experimental science of determining the atomic and molecular structure of a crystal, in which the crystalline structure causes a beam of incident X-rays to diffract in specific directions.

  4. R-factor (crystallography) - Wikipedia

    en.wikipedia.org/wiki/R-factor_(crystallography)

    Small molecules (up to ca. 1000 atoms) usually form better-ordered crystals than large molecules, and thus it is possible to attain lower R-factors. In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03.

  5. F-factor (conversion factor) - Wikipedia

    en.wikipedia.org/wiki/F-factor_(conversion_factor)

    The two determinants of the F-factor are the effective atomic number (Z) of the material and the type of ionizing radiation being considered. Since the effective Z of air and soft tissue is approximately the same, the F-factor is approximately 1 for many x-ray imaging applications. However, bone has an F-factor of up to 4, due to its higher ...

  6. Crystal polymorphism - Wikipedia

    en.wikipedia.org/wiki/Crystal_polymorphism

    Phase transitions (phase changes) that help describe polymorphism include polymorphic transitions as well as melting and vaporization transitions. According to IUPAC, a polymorphic transition is "A reversible transition of a solid crystalline phase at a certain temperature and pressure (the inversion point) to another phase of the same chemical composition with a different crystal structure."

  7. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    In condensed matter physics and crystallography, the static structure factor (or structure factor for short) is a mathematical description of how a material scatters incident radiation. The structure factor is a critical tool in the interpretation of scattering patterns ( interference patterns ) obtained in X-ray , electron and neutron ...

  8. Characteristic X-ray - Wikipedia

    en.wikipedia.org/wiki/Characteristic_X-ray

    The different electron states which exist in an atom are usually described by atomic orbital notation, as is used in chemistry and general physics. However, X-ray science has special terminology to describe the transition of electrons from upper to lower energy levels: traditional Siegbahn notation, or alternatively, simplified X-ray notation.

  9. Patterson function - Wikipedia

    en.wikipedia.org/wiki/Patterson_function

    The Patterson function is used to solve the phase problem in X-ray crystallography. It was introduced in 1935 by Arthur Lindo Patterson while he was a visiting researcher in the laboratory of Bertram Eugene Warren at MIT. [1] [2] The Patterson function is defined as