enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  3. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    Probabilistic mixture models such as Gaussian mixture models (GMM) are used to resolve point set registration problems in image processing and computer vision fields. For pair-wise point set registration , one point set is regarded as the centroids of mixture models, and the other point set is regarded as data points (observations).

  4. Point-set registration - Wikipedia

    en.wikipedia.org/wiki/Point-set_registration

    The point set represents the Gaussian mixture model (GMM) centroids. When the two point sets are optimally aligned, the correspondence is the maximum of the GMM posterior probability for a given data point. To preserve the topological structure of the point sets, the GMM centroids are forced to move coherently as a group.

  5. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of the axes, appears to be two very flat and wide ellipses) is fit to the observed data.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...

  7. Graph cuts in computer vision - Wikipedia

    en.wikipedia.org/wiki/Graph_cuts_in_computer_vision

    Many of these energy minimization problems can be approximated by solving a maximum flow problem in a graph [2] (and thus, by the max-flow min-cut theorem, define a minimal cut of the graph). Under most formulations of such problems in computer vision, the minimum energy solution corresponds to the maximum a posteriori estimate of a solution.

  8. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  9. File:Parameter estimation process infinite Gaussian mixture ...

    en.wikipedia.org/wiki/File:Parameter_estimation...

    Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.