enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...

  4. Multidimensional system - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_system

    A state-space model is a representation of a system in which the effect of all "prior" input values is contained by a state vector. In the case of an m-d system, each dimension has a state vector that contains the effect of prior inputs relative to that dimension. The collection of all such dimensional state vectors at a point constitutes the ...

  5. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    In a linear system the phase space is the N-dimensional Euclidean space, so any point in phase space can be represented by a vector with N numbers. The analysis of linear systems is possible because they satisfy a superposition principle : if u ( t ) and w ( t ) satisfy the differential equation for the vector field (but not necessarily the ...

  6. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  7. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Consider a physical system modeled in state-space representation. A system is said to be observable if, for every possible evolution of state and control vectors, the current state can be estimated using only the information from outputs (physically, this generally corresponds to information obtained by sensors). In other words, one can ...

  8. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  9. Control theory - Wikipedia

    en.wikipedia.org/wiki/Control_theory

    To abstract from the number of inputs, outputs, and states, the variables are expressed as vectors and the differential and algebraic equations are written in matrix form (the latter only being possible when the dynamical system is linear). The state space representation (also known as the "time-domain approach") provides a convenient and ...