enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]

  3. Bentley–Ottmann algorithm - Wikipedia

    en.wikipedia.org/wiki/Bentley–Ottmann_algorithm

    No two line segment endpoints or crossings have the same x-coordinate; No line segment endpoint lies upon another line segment; No three line segments intersect at a single point. In such a case, L will always intersect the input line segments in a set of points whose vertical ordering changes only at a finite set of discrete events ...

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The simplest case in Euclidean geometry is the lineline intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Line–plane intersection; Line–sphere intersection; Intersection of a polyhedron with a line

  6. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  7. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    For every two distinct points, there is exactly one line that contains both points. The intersection of any two distinct lines contains exactly one point. There exists a set of four points, no three of which belong to the same line. Duality in the Fano plane: Each point corresponds to a line and vice versa.

  8. Line-cylinder intersection - Wikipedia

    en.wikipedia.org/wiki/Line-cylinder_intersection

    Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all. Or there may be one or two points of intersection. [1] Or a line may lie along the surface of a cylinder, parallel to its axis ...

  9. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    These are the connected components of the points that would remain after removing all points on lines. [1] The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines.