Search results
Results from the WOW.Com Content Network
The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.
No two line segment endpoints or crossings have the same x-coordinate; No line segment endpoint lies upon another line segment; No three line segments intersect at a single point. In such a case, L will always intersect the input line segments in a set of points whose vertical ordering changes only at a finite set of discrete events ...
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]
intercept theorem with a pair of intersecting lines intercept theorem with more than two lines. The first two statements remain true if the two rays get replaced by two lines intersecting in . In this case there are two scenarios with regard to , either it lies between the 2 parallels (X figure) or it does not (V figure).
A projective plane geometry is a nonempty set X (whose elements are called "points"), along with a nonempty collection L of subsets of X (whose elements are called "lines"), such that: For every two distinct points, there is exactly one line that contains both points. The intersection of any two distinct lines contains exactly one point.
The scientists then calculated the energy expended by the baboons transitioning from four to two legs. They found that as the animals reared up, their energy consumption tripled – but the ...
Green line has two intersections. Yellow line lies tangent to the cylinder, so has infinitely many points of intersection. Line-cylinder intersection is the calculation of any points of intersection, given an analytic geometry description of a line and a cylinder in 3d space. An arbitrary line and cylinder may have no intersection at all.