Search results
Results from the WOW.Com Content Network
In the C++ programming language, the assignment operator, =, is the operator used for assignment.Like most other operators in C++, it can be overloaded.. The copy assignment operator, often just called the "assignment operator", is a special case of assignment operator where the source (right-hand side) and destination (left-hand side) are of the same class type.
Copy assignment operator – assign all the object's members from the corresponding members of the assignment operator's argument, calling the copy assignment operators of the object's class-type members, and doing a plain assignment of all non-class type (e.g. int or pointer) data members.
Copy constructor if no move constructor and move assignment operator are explicitly declared. If a destructor is declared generation of a copy constructor is deprecated ( C++11 , proposal N3242 [ 2 ] ).
The move assignment operator, like most C++ operators, can be overloaded. Like the copy assignment operator it is a special member function . If the move assignment operator is not explicitly defined, the compiler generates an implicit move assignment operator ( C++11 and newer) provided that copy / move constructors , copy assignment operator ...
C++ objects in general behave like primitive types, so to copy a C++ object one could use the '=' (assignment) operator. There is a default assignment operator provided for all classes, but its effect may be altered through the use of operator overloading. There are dangers when using this technique (see slicing).
All assignment expressions exist in C and C++ and can be overloaded in C++. For the given operators the semantic of the built-in combined assignment expression a ⊚= b is equivalent to a = a ⊚ b , except that a is evaluated only once.
In this case chain assignment can be implemented by having a right-associative assignment, and assignments happen right-to-left. For example, i = arr[i] = f() is equivalent to arr[i] = f(); i = arr[i]. In C++ they are also available for values of class types by declaring the appropriate return type for the assignment operator.
In C++ programming, object slicing occurs when an object of a subclass type is copied to an object of superclass type: the superclass copy will not have any of the member variables or member functions defined in the subclass. These variables and functions have, in effect, been "sliced off".