Search results
Results from the WOW.Com Content Network
At the same time the student is generating a list of the multiples of the small number (i.e., partial quotients) that have so far been taken away, which when added up together would then become the whole number quotient itself. For example, to calculate 132 ÷ 8, one might successively subtract 80, 40 and 8 to leave 4:
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since = +.
Next one repeats step 2, using the small digit concatenated with the next digit of the dividend to form a new partial dividend (15). Dividing the new partial dividend by the divisor (4), one writes the result as before — the quotient above the next digit of the dividend, and the remainder as a small digit to the upper right.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
For example, if the rational root theorem produces a single (rational) root of a quintic polynomial, it can be factored out to obtain a quartic (fourth degree) quotient; the explicit formula for the roots of a quartic polynomial can then be used to find the other four roots of the quintic.
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
In cases where one or more of the b terms has more than two digits, the final quotient value b cannot be constructed simply by concatenating the digit pairs. Instead, each term, starting with b 1 , {\displaystyle b_{1},} should be multiplied by 100, and the next term added (or, if negative, subtracted).
The classical finite-difference approximations for numerical differentiation are ill-conditioned. However, if is a holomorphic function, real-valued on the real line, which can be evaluated at points in the complex plane near , then there are stable methods.