Search results
Results from the WOW.Com Content Network
In electrical engineering, Neher–McGrath is a method of estimating the steady-state temperature of electrical power cables for some commonly encountered configurations. By estimating the temperature of the cables, the safe long-term current-carrying capacity of the cables can be calculated.
The best known [1] general exact algorithm is due to H. J. Ryser ().Ryser's method is based on an inclusion–exclusion formula that can be given [2] as follows: Let be obtained from A by deleting k columns, let () be the product of the row-sums of , and let be the sum of the values of () over all possible .
In thermodynamics, the Volume Correction Factor (VCF), also known as Correction for the effect of Temperature on Liquid (CTL), is a standardized computed factor used to correct for the thermal expansion of fluids, primarily, liquid hydrocarbons at various temperatures and densities. [1]
Laplace's expansion by minors for computing the determinant along a row, column or diagonal extends to the permanent by ignoring all signs. [9]For every , = =,,,where , is the entry of the ith row and the jth column of B, and , is the permanent of the submatrix obtained by removing the ith row and the jth column of B.
A direct practical application of the heat equation, in conjunction with Fourier theory, in spherical coordinates, is the prediction of thermal transfer profiles and the measurement of the thermal diffusivity in polymers (Unsworth and Duarte). This dual theoretical-experimental method is applicable to rubber, various other polymeric materials ...
The method proceeds by calculating the heat capacity rates (i.e. mass flow rate multiplied by specific heat capacity) and for the hot and cold fluids respectively. To determine the maximum possible heat transfer rate in the heat exchanger, the minimum heat capacity rate must be used, denoted as C m i n {\displaystyle \ C_{\mathrm {min} }} :
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In thermal engineering, the logarithmic mean temperature difference (LMTD) is used to determine the temperature driving force for heat transfer in flow systems, most notably in heat exchangers. The LMTD is a logarithmic average of the temperature difference between the hot and cold feeds at each end of the double pipe exchanger.