enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quotient filter - Wikipedia

    en.wikipedia.org/wiki/Quotient_filter

    We can test if a quotient filter contains some key, d, as follows. [4] We hash the key to produce its fingerprint, d H, which we then partition into its high-order q bits, d Q, which comprise its quotient, and its low-order r bits, d R, which comprise its remainder. Slot d Q is the key's canonical slot. That slot is empty if its three meta-data ...

  3. Primary clustering - Wikipedia

    en.wikipedia.org/wiki/Primary_clustering

    In computer programming, primary clustering is a phenomenon that causes performance degradation in linear-probing hash tables.The phenomenon states that, as elements are added to a linear probing hash table, they have a tendency to cluster together into long runs (i.e., long contiguous regions of the hash table that contain no free slots).

  4. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  5. Key clustering - Wikipedia

    en.wikipedia.org/wiki/Key_clustering

    Key or hash function should avoid clustering, the mapping of two or more keys to consecutive slots. Such clustering may cause the lookup cost to skyrocket, even if the load factor is low and collisions are infrequent. The popular multiplicative hash [1] is claimed to have particularly poor clustering behaviour. [2]

  6. k-means++ - Wikipedia

    en.wikipedia.org/wiki/K-means++

    In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.

  7. Locality-sensitive hashing - Wikipedia

    en.wikipedia.org/wiki/Locality-sensitive_hashing

    In computer science, locality-sensitive hashing (LSH) is a fuzzy hashing technique that hashes similar input items into the same "buckets" with high probability. [1] ( The number of buckets is much smaller than the universe of possible input items.) [1] Since similar items end up in the same buckets, this technique can be used for data clustering and nearest neighbor search.

  8. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    The minimum disagreement correlation clustering problem is the following optimization problem: + + (). Here, the set + contains the attractive edges whose endpoints are in different components with respect to the clustering and the set () contains the repulsive edges whose endpoints are in the same component with respect to the clustering .

  9. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .