Search results
Results from the WOW.Com Content Network
C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.
The Java data-mining software Weka has a version of Induct RDR called Ridor. It learns rules from a data set with the principal aim to predict a class within a test set. RDRPOSTagger toolkit: Single-classification ripple-down rules for part-of-speech tagging; RDRsegmenter toolkit: Single-classification ripple-down rules for word segmentation
Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
Multi-label classification is a generalization of multiclass classification, which is the single-label problem of categorizing instances into precisely one of several (greater than or equal to two) classes. In the multi-label problem the labels are nonexclusive and there is no constraint on how many of the classes the instance can be assigned to.
Various data mining functions and techniques like statistical classification and association, regression analysis, data clustering, and attribute importance are covered by the 1.0 release of this standard. It never received wide acceptance, and there is no known implementation.
The left bottom corner shows the numbers of the class-outliers, prototypes and absorbed points for all three classes. The number of prototypes varies from 15% to 20% for different classes in this example. Fig. 5 shows that the 1NN classification map with the prototypes is very similar to that with the initial data set.
there are no examples in the subset, which happens when no example in the parent set was found to match a specific value of the selected attribute. An example could be the absence of a person among the population with age over 100 years. Then a leaf node is created and labelled with the most common class of the examples in the parent node's set.
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.