enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Using row operations to convert a matrix into reduced row echelon form is sometimes called Gauss–Jordan elimination. In this case, the term Gaussian elimination refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes ...

  3. Row echelon form - Wikipedia

    en.wikipedia.org/wiki/Row_echelon_form

    A matrix is in reduced row echelon form if it is in row echelon form, with the additional property that the first nonzero entry of each row is equal to and is the only nonzero entry of its column. The reduced row echelon form of a matrix is unique and does not depend on the sequence of elementary row operations used to obtain it.

  4. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    We define the final permutation matrix as the identity matrix which has all the same rows swapped in the same order as the matrix while it transforms into the matrix . For our matrix A ( n − 1 ) {\displaystyle A^{(n-1)}} , we may start by swapping rows to provide the desired conditions for the n-th column.

  5. Row equivalence - Wikipedia

    en.wikipedia.org/wiki/Row_equivalence

    Any matrix can be reduced by elementary row operations to a matrix in reduced row echelon form. Two matrices in reduced row echelon form have the same row space if and only if they are equal. This line of reasoning also proves that every matrix is row equivalent to a unique matrix with reduced row echelon form.

  6. Pivot element - Wikipedia

    en.wikipedia.org/wiki/Pivot_element

    A pivot position in a matrix, A, is a position in the matrix that corresponds to a row–leading 1 in the reduced row echelon form of A. Since the reduced row echelon form of A is unique, the pivot positions are uniquely determined and do not depend on whether or not row interchanges are performed in the reduction process.

  7. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  8. Hermite normal form - Wikipedia

    en.wikipedia.org/wiki/Hermite_normal_form

    In linear algebra, the Hermite normal form is an analogue of reduced echelon form for matrices over the integers Z.Just as reduced echelon form can be used to solve problems about the solution to the linear system Ax=b where x is in R n, the Hermite normal form can solve problems about the solution to the linear system Ax=b where this time x is restricted to have integer coordinates only.

  9. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).