Search results
Results from the WOW.Com Content Network
The partial pressure of oxygen (pO 2) in the pulmonary alveoli is required to calculate both the alveolar-arterial gradient of oxygen and the amount of right-to-left cardiac shunt, which are both clinically useful quantities. However, it is not practical to take a sample of gas from the alveoli in order to directly measure the partial pressure ...
Ventilation rate (V) is the total gas volume that enters and leaves the alveoli in a given amount of time, commonly measured per minute. To calculate the ventilation rate, the tidal volume (inhaled or exhaled gas volume during normal breath) is multiplied by the frequency of breaths per minute, which is represented by the formula:
The Bohr equation is used to quantify the ratio of physiological dead space to the total tidal volume, and gives an indication of the extent of wasted ventilation. The original formulation by Bohr, [1] required measurement of the alveolar partial pressure P A.
The partial volume of a particular gas is a fraction of the total volume occupied by the gas mixture, with unchanged pressure and temperature. In gas mixtures, e.g. air, the partial volume allows focusing on one particular gas component, e.g. oxygen.
Oxygen gas is the second most common component of the Earth's atmosphere, taking up 20.8% of its volume and 23.1% of its mass (some 10 15 tonnes). [19] [70] [d] Earth is unusual among the planets of the Solar System in having such a high concentration of oxygen gas in its atmosphere: Mars (with 0.1% O 2 by volume) and Venus have much less. The O
The alveolar oxygen partial pressure is lower than the atmospheric O 2 partial pressure for two reasons.. Firstly, as the air enters the lungs, it is humidified by the upper airway and thus the partial pressure of water vapour (47 mmHg) reduces the oxygen partial pressure to about 150 mmHg.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are ...