enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Improper integral - Wikipedia

    en.wikipedia.org/wiki/Improper_integral

    In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. [1] In the context of Riemann integrals (or, equivalently, Darboux integrals ), this typically involves unboundedness, either of the set over which the integral is taken or of ...

  3. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral. This gives the following formulas (where a ≠ 0 ), which are valid over any interval where f is continuous (over larger intervals, the constant C must be replaced ...

  5. Dirichlet integral - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_integral

    In this case, the improper definite integral can be determined in several ways: the Laplace transform, double integration, differentiating under the integral sign, contour integration, and the Dirichlet kernel. But since the integrand is an even function, the domain of integration can be extended to the negative real number line as well.

  6. Frullani integral - Wikipedia

    en.wikipedia.org/wiki/Frullani_integral

    In mathematics, Frullani integrals are a specific type of improper integral named after the Italian mathematician Giuliano Frullani.The integrals are of the form ()where is a function defined for all non-negative real numbers that has a limit at , which we denote by ().

  7. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  8. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    Limits of integration can also be defined for improper integrals, with the limits of integration of both + and again being a and b. For an improper integral ∫ a ∞ f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)\,dx} or ∫ − ∞ b f ( x ) d x {\displaystyle \int _{-\infty }^{b}f(x)\,dx} the limits of integration are a and ∞, or − ...

  9. Lobachevsky integral formula - Wikipedia

    en.wikipedia.org/wiki/Lobachevsky_integral_formula

    In mathematics, Dirichlet integrals play an important role in distribution theory. We can see the Dirichlet integral in terms of distributions. One of those is the improper integral of the sinc function over the positive real line,