Search results
Results from the WOW.Com Content Network
at each geopotential altitude, where g is the standard acceleration of gravity, and R specific is the specific gas constant for dry air (287.0528J⋅kg −1 ⋅K −1). The solution is given by the barometric formula. Air density must be calculated in order to solve for the pressure, and is used in calculating dynamic pressure for moving vehicles.
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
Comparison of the 1962 US Standard Atmosphere graph of geometric altitude against air density, pressure, the speed of sound and temperature with approximate altitudes of various objects. [ 1 ] The U.S. Standard Atmosphere is a static atmospheric model of how the pressure , temperature , density , and viscosity of the Earth's atmosphere change ...
In aviation, pressure altitude is the height above a standard datum plane (SDP), which is a theoretical level where the weight of the atmosphere is 29.921 inches of mercury (1,013.2 mbar; 14.696 psi) as measured by a barometer. [2]
The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.
Typical usages are as a basis for pressure altimeter calibrations, aircraft performance calculations, aircraft and rocket design, ballistic tables, and meteorological diagrams." [1] For example, the U.S. Standard Atmosphere derives the values for air temperature, pressure, and mass density, as a function of altitude above sea level.
Therefore, a pressure altitude of 32,000 ft (9,800 m) is referred to as "flight level 320". In metre altitudes the format is Flight Level xx000 metres. Flight levels are usually designated in writing as FLxxx, where xxx is a two- or three-digit number indicating the pressure altitude in units of 100 feet (30 m). In radio communications, FL290 ...