Search results
Results from the WOW.Com Content Network
A consortium of several companies started to work in 2008 on a free implementation of 3D surface texture parameters. The consortium, called OpenGPS [1] later focused its efforts on an XML file format (X3P) that was published under the ISO standard ISO 25178-72.
Surface roughness can be regarded as the quality of a surface of not being smooth and it is hence linked to human perception of the surface texture. From a mathematical perspective it is related to the spatial variability structure of surfaces, and inherently it is a multiscale property.
Surface metrology is the measurement of small-scale features on surfaces, and is a branch of metrology. Surface primary form, surface fractality, and surface finish (including surface roughness) are the parameters most commonly associated with the field. It is important to many disciplines and is mostly known for the machining of precision ...
Download as PDF; Printable version; ... There are several parameters for expressing waviness ... This is a surface texture profile that has the shorter roughness ...
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
These imperfections are part of the surface and cannot be removed by cleaning. Surface quality is characterized either by the American military standard notation (eg "60-40") or by specifying RMS (root mean square) roughness (eg "0.3 nm RMS"). [1] American notation focuses on how visible surface defects are, and is a "cosmetic" specification.
Roughness length is a parameter of some vertical wind profile equations that model the horizontal mean wind speed near the ground. In the log wind profile , it is equivalent to the height at which the wind speed theoretically becomes zero in the absence of wind-slowing obstacles and under neutral conditions.
The top image shows asperities under no load. The bottom image depicts the same surface after applying a load. In materials science, asperity, defined as "unevenness of surface, roughness, ruggedness" (from the Latin asper—"rough" [1]), has implications (for example) in physics and seismology. Smooth surfaces, even those polished to a mirror ...