enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heap (data structure) - Wikipedia

    en.wikipedia.org/wiki/Heap_(data_structure)

    Example of a binary max-heap with node keys being integers between 1 and 100. In computer science, a heap is a tree-based data structure that satisfies the heap property: In a max heap, for any given node C, if P is the parent node of C, then the key (the value) of P is greater than or equal to the key of C.

  3. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    [6] [7] The heap array is assumed to have its first element at index 1. // Push a new item to a (max) heap and then extract the root of the resulting heap. // heap: an array representing the heap, indexed at 1 // item: an element to insert // Returns the greater of the two between item and the root of heap.

  4. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...

  5. Heapsort - Wikipedia

    en.wikipedia.org/wiki/Heapsort

    The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.

  6. Min-max heap - Wikipedia

    en.wikipedia.org/wiki/Min-max_heap

    A min-max heap is a complete binary tree containing alternating min (or even) and max (or odd) levels.Even levels are for example 0, 2, 4, etc, and odd levels are respectively 1, 3, 5, etc.

  7. Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_heap

    Figure 1. Example of a Fibonacci heap. It has three trees of degrees 0, 1 and 3. Three vertices are marked (shown in blue). Therefore, the potential of the heap is 9 (3 trees + 2 × (3 marked-vertices)). A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to ...

  8. Quadtree - Wikipedia

    en.wikipedia.org/wiki/Quadtree

    The cells of a PR quadtree, however, store a list of points that exist within the cell of a leaf. As mentioned previously, for trees following this decomposition strategy the height depends on the spatial distribution of the points. Like the point quadtree, the PR quadtree may also have a linear height when given a "bad" set.

  9. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    A treap with alphabetic key and numeric max heap order. The treap was first described by Raimund Seidel and Cecilia R. Aragon in 1989; [1] [2] its name is a portmanteau of tree and heap. It is a Cartesian tree in which each key is given a (randomly chosen) numeric priority.