Search results
Results from the WOW.Com Content Network
Rule 30 is an elementary cellular automaton introduced by Stephen Wolfram in 1983. [2] Using Wolfram's classification scheme , Rule 30 is a Class III rule, displaying aperiodic, chaotic behaviour. This rule is of particular interest because it produces complex, seemingly random patterns from simple, well-defined rules.
Examples are rules 4, 108, 218 and 250. Class 3: Cellular automata which appear to remain in a random state. Examples are rules 22, 30, 126, 150, 182. Class 4: Cellular automata which form areas of repetitive or stable states, but also form structures that interact with each other in complicated ways. An example is rule 110.
The rule 30, rule 90, rule 110, and rule 184 cellular automata are particularly interesting. The images below show the history of rules 30 and 110 when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s.
Notable rules in this class include rule 30, rule 110, and rule 184. Rule 90 is also interesting because it creates Pascal's triangle modulo 2. A code of this type suffixed by an R, such as "Rule 37R", indicates a second-order cellular automaton with the same neighborhood structure.
A cellular automaton is defined by its cells (often a one- or two-dimensional array), a finite set of values or states that can go into each cell, a neighborhood associating each cell with a finite set of nearby cells, and an update rule according to which the values of all cells are updated, simultaneously, as a function of the values of their neighboring cells.
The Rule 110 cellular automaton (often called simply Rule 110) [a] is an elementary cellular automaton with interesting behavior on the boundary between stability and chaos. In this respect, it is similar to Conway's Game of Life. Like Life, Rule 110 with a particular repeating background pattern is known to be Turing complete. [2]
For premium support please call: 800-290-4726 more ways to reach us
Isotropic non-totalistic rules behave identically under rotation and reflection. There are 2 102 ≈5.07*10 30 rules of this kind, including outer-totalistic rules. [22] Generations rules include one or more "dying" states cells switch to instead of instantly dying. The most famous examples in this category are the rules "Brian's Brain" (B2/S/3 ...