enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acoustic attenuation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_attenuation

    Acoustic attenuation in water is frequency-squared dependent, namely =. Acoustic attenuation in many metals and crystalline materials is frequency-independent, namely =. [10] In contrast, it is widely noted that the of viscoelastic materials is between 0 and 2.

  3. Stokes's law of sound attenuation - Wikipedia

    en.wikipedia.org/wiki/Stokes's_law_of_sound...

    In acoustics, Stokes's law of sound attenuation is a formula for the attenuation of sound in a Newtonian fluid, such as water or air, due to the fluid's viscosity.It states that the amplitude of a plane wave decreases exponentially with distance traveled, at a rate α given by = where η is the dynamic viscosity coefficient of the fluid, ω is the sound's angular frequency, ρ is the fluid ...

  4. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    In physics, the acoustic wave equation is a second-order partial differential equation that governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The equation describes the evolution of acoustic pressure p or particle velocity u as a function of position x and time t. A simplified (scalar) form of the ...

  5. Acoustic transmission - Wikipedia

    en.wikipedia.org/wiki/Acoustic_transmission

    Example of airborne and structure-borne transmission of sound, where Lp is sound pressure level, A is attenuation, P is acoustical pressure, S is the area of the wall [m²], and τ is the transmission coefficient. Acoustic transmission is the transmission of sounds through and between materials, including air, wall, and musical instruments.

  6. Attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Attenuation_coefficient

    The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:

  7. Attenuation - Wikipedia

    en.wikipedia.org/wiki/Attenuation

    Ultrasound attenuation can be used for extensional rheology measurement. There are acoustic rheometers that employ Stokes' law for measuring extensional viscosity and volume viscosity. Wave equations which take acoustic attenuation into account can be written on a fractional derivative form. [4]

  8. Sound attenuator - Wikipedia

    en.wikipedia.org/wiki/Sound_attenuator

    The acoustic performance of a sound attenuator is tested over a range of airflow velocities, and for forward and reverse flow conditions. Forward flow is when the air and sound waves propagate in the same direction. The insertion loss of a silencer is defined as [11] = ⁡ where:

  9. Acoustic impedance - Wikipedia

    en.wikipedia.org/wiki/Acoustic_impedance

    r is the specific acoustic resistance in the time domain; g = r −1 is the specific acoustic conductance in the time domain (r −1 is the convolution inverse of r). [citation needed] Specific acoustic impedance, denoted z is the Laplace transform, or the Fourier transform, or the analytic representation of time domain specific acoustic ...