enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pivot table - Wikipedia

    en.wikipedia.org/wiki/Pivot_table

    For example, in Microsoft Excel one must first select the entire data in the original table and then go to the Insert tab and select "Pivot Table" (or "Pivot Chart"). The user then has the option of either inserting the pivot table into an existing sheet or creating a new sheet to house the pivot table.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Most data files are adapted from UCI Machine Learning Repository data, some are collected from the literature. treated for missing values, numerical attributes only, different percentages of anomalies, labels 1000+ files ARFF: Anomaly detection: 2016 (possibly updated with new datasets and/or results) [331] Campos et al.

  5. Power Pivot - Wikipedia

    en.wikipedia.org/wiki/Power_Pivot

    Power Pivot supports the use of expression languages to query the model and calculate advanced measures. Pivot tables or pivot charts may be used to explore the model once built. It is available as an add-in in Excel 2010, as a separate download for Excel 2013, and is included by default since Excel 2016.

  6. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  7. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  8. Spreadsheet - Wikipedia

    en.wikipedia.org/wiki/Spreadsheet

    Example of a spreadsheet holding data about a group of audio tracks. A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. [1] [2] [3] Spreadsheets were developed as computerized analogs of paper accounting worksheets. [4] The program operates on data entered in cells of a table.

  9. Count-distinct problem - Wikipedia

    en.wikipedia.org/wiki/Count-distinct_problem

    In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.

  1. Related searches excel pivot table count unique dates in range of data frame meaning in machine learning

    pivot table wikiwhat is a pivot table
    pivot table in excel examplepivot table row