Search results
Results from the WOW.Com Content Network
The pyruvate produced by glycolysis is an important intermediary in the conversion of carbohydrates into fatty acids and cholesterol. [46] This occurs via the conversion of pyruvate into acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into cytosol where the synthesis of fatty acids and cholesterol occurs.
Pyruvate, the conjugate base, CH 3 COCOO −, is an intermediate in several metabolic pathways throughout the cell. Pyruvic acid can be made from glucose through glycolysis , converted back to carbohydrates (such as glucose) via gluconeogenesis , or converted to fatty acids through a reaction with acetyl-CoA . [ 3 ]
Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP . [ 1 ]
Pyruvate dehydrogenase complex (PDC) is a complex of three enzymes that converts pyruvate into acetyl-CoA by a process called pyruvate decarboxylation. [1] Acetyl-CoA may then be used in the citric acid cycle to carry out cellular respiration , and this complex links the glycolysis metabolic pathway to the citric acid cycle .
Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate to the mitochondria in order to be oxidized by the citric acid cycle.
The pyruvate produced by glycolysis is an important intermediary in the conversion of carbohydrates into fatty acids and cholesterol. [34] This occurs via the conversion of pyruvate into acetyl-CoA in the mitochondrion. However, this acetyl-CoA needs to be transported into cytosol where the synthesis of fatty acids and cholesterol occurs.
Phosphoenolpyruvate (2-phosphoenolpyruvate, PEP) is the carboxylic acid derived from the enol of pyruvate and phosphate. It exists as an anion. PEP is an important intermediate in biochemistry. It has the highest-energy phosphate bond found (−61.9 kJ/mol) in organisms, and is involved in glycolysis and gluconeogenesis.
Pyruvate kinase catalyzes the last step within glycolysis, the dephosphorylation of phosphoenolpyruvate to pyruvate, and is responsible for net ATP production within the glycolytic sequence. In contrast to mitochondrial respiration , energy regeneration by pyruvate kinase is independent from oxygen supply and allows survival of the organs under ...