Search results
Results from the WOW.Com Content Network
Sections 4.3 (The master method) and 4.4 (Proof of the master theorem), pp. 73–90. Michael T. Goodrich and Roberto Tamassia. Algorithm Design: Foundation, Analysis, and Internet Examples. Wiley, 2002. ISBN 0-471-38365-1. The master theorem (including the version of Case 2 included here, which is stronger than the one from CLRS) is on pp. 268 ...
In mathematics, a theorem that covers a variety of cases is sometimes called a master theorem. Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin ...
the logarithmic cost model, also called logarithmic-cost measurement (and similar variations), assigns a cost to every machine operation proportional to the number of bits involved The latter is more cumbersome to use, so it is only employed when necessary, for example in the analysis of arbitrary-precision arithmetic algorithms, like those ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In computer science, the Akra–Bazzi method, or Akra–Bazzi theorem, is used to analyze the asymptotic behavior of the mathematical recurrences that appear in the analysis of divide and conquer algorithms where the sub-problems have substantially different sizes.
Pathwidth, [6] or, equivalently, interval thickness, and vertex separation number [7] Rank coloring; k-Chinese postman; Shortest total path length spanning tree [3]: ND3 Slope number two testing [8] Recognizing string graphs [9] Subgraph isomorphism problem [3]: GT48 Treewidth [6] Testing whether a tree may be represented as Euclidean minimum ...
For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...
The bracket integration method (method of brackets) applies Ramanujan's master theorem to a broad range of integrals. [7] The bracket integration method generates the integrand's series expansion , creates a bracket series, identifies the series coefficient and formula parameters and computes the integral.