Search results
Results from the WOW.Com Content Network
Chromic acid in aqueous sulfuric acid and acetone is known as the Jones reagent, which will oxidize primary and secondary alcohols to carboxylic acids and ketones respectively, while rarely affecting unsaturated bonds. [12] Pyridinium chlorochromate is generated from chromium trioxide and pyridinium chloride.
The reaction process begins with deprotonation at the halogenated position. In a related reaction, α-halo carboxylic esters can be reduced by lithium aluminium hydride to the α-halo alcohols, which can be converted to the α-epoxides. [5] α-Halo-esters can be converted to vinyl halides. upon reaction with ketones and chromous chloride. [6]
Substrates are broadly limited to methyl ketones and secondary alcohols oxidizable to methyl ketones, such as isopropanol.The only primary alcohol and aldehyde to undergo this reaction are ethanol and acetaldehyde, respectively. 1,3-Diketones such as acetylacetone also undergo this reaction. β-ketoacids such as acetoacetic acid will also give the test upon heating.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
When enolate formation is impossible, the Favorskii rearrangement takes place by an alternate mechanism, in which addition to hydroxide to the ketone takes place, followed by concerted collapse of the tetrahedral intermediate and migration of the neighboring carbon with displacement of the halide.
The likely reaction mechanism for the Kindler modification. The first stage of the reaction is basic imine formation by the ketone group and the amine group of morpholine to give an enamine . This reacts as a nucleophile with electrophilic sulfur, similar to an Stork enamine alkylation reaction.
The reaction was originally carried out in diethyl ether and routinely generated high yields due to the inherent irreversibly of the reaction caused by the formation of nitrogen gas. Though these reactions can be carried out at room temperature, the rate does increase at higher temperatures. Typically, the reaction is carried out at less than ...
Further condensation reactions can occur in strongly acidic solution with the formation of trichromates, Cr 3 O 2− 10, and tetrachromates, Cr 4 O 2− 13. [2] All polyoxyanions of chromium(VI) have structures made up of tetrahedral CrO 4 units sharing corners. [3] The hydrogen chromate ion, HCrO 4 −, is a weak acid: HCrO − 4 ⇌ CrO 2−