Search results
Results from the WOW.Com Content Network
In electromagnetism, Ørsted's law, also spelled Oersted's law, is the physical law stating that an electric current induces a magnetic field. [ 2 ] This was discovered on 21 April 1820 by Danish physicist Hans Christian Ørsted (1777–1851), [ 3 ] [ 4 ] when he noticed that the needle of a compass next to a wire carrying current turned so ...
English: Experiment showing the Oersted's law. This demonstrates that around conductor where current flows, a magnetic field is created, as shown by the movement of the needle. Prepared, performed and explained by Prof. Oliver Zajkov, Physics Institute at the Ss. Cyril and Methodius University of Skopje, Macedonia.
Hans Christian Ørsted (/ ˈ ɜːr s t ɛ d /; [5] Danish: [ˈhænˀs ˈkʰʁestjæn ˈɶɐ̯steð] ⓘ; often rendered Oersted in English; [note 1] 14 August 1777 – 9 March 1851) was a Danish physicist and chemist who discovered that electric currents create magnetic fields. This phenomenon is known as Oersted's law.
The oersted (/ ˈ ɜːr s t ɛ d /,; [1] symbol Oe) is the coherent derived unit of the auxiliary magnetic field H in the centimetre–gram–second system of units (CGS). [2] It is equivalent to 1 dyne per maxwell .
The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v , with respect to a magnet is calculated in the frame of reference of the magnet and in the ...
The oersted unit of magnetic induction is named for his contributions. 1820 – André-Marie Ampère , professor of mathematics at the École Polytechnique, demonstrates that parallel current-carrying wires experience magnetic force in a meeting of the French Academy of Science , exactly one week after Ørsted's announcement of his discovery ...
The experiment which led Faraday to the discovery of electromagnetic induction was made as follows: He constructed what is now and was then termed an induction coil, the primary and secondary wires of which were wound on a wooden bobbin, side by side, and insulated from one another. In the circuit of the primary wire he placed a battery of ...
Faraday's experiment showing induction between coils of wire: The liquid battery (right) provides a current which flows through the small coil (A), creating a magnetic field. When the coils are stationary, no current is induced.