Search results
Results from the WOW.Com Content Network
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
Geometric progressions show exponential growth or exponential decline, as opposed to arithmetic progressions showing linear growth or linear decline. This comparison was taken by T.R. Malthus as the mathematical foundation of his An Essay on the Principle of Population.
In logistic populations however, the intrinsic growth rate, also known as intrinsic rate of increase (r) is the relevant growth constant. Since generations of reproduction in a geometric population do not overlap (e.g. reproduce once a year) but do in an exponential population, geometric and exponential populations are usually considered to be ...
By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:
In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n.
The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...
The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length at most n (relative to a symmetric generating set) is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial ...
The geometric mean is more appropriate than the arithmetic mean for describing proportional growth, both exponential growth (constant proportional growth) and varying growth; in business the geometric mean of growth rates is known as the compound annual growth rate (CAGR). The geometric mean of growth over periods yields the equivalent constant ...