Search results
Results from the WOW.Com Content Network
Near-IR absorption spectrum of dichloromethane showing complicated overlapping overtones of mid IR absorption features.. Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum (from 780 nm to 2500 nm). [1]
The absorption coefficient is defined as the probability of photon absorption in tissue per unit path length. [2] Different tissue components have different μ a {\displaystyle \mu _{a}} values. Moreover, μ a {\displaystyle \mu _{a}} is a function of wavelength.
The NIRSpec (Near-Infrared Spectrograph) is one of the four scientific instruments flown on the James Webb Space Telescope (JWST). [2] The JWST is the follow-on mission to the Hubble Space Telescope (HST) and is developed to receive more information about the origins of the universe by observing infrared light from the first stars and galaxies.
Functional near-infrared spectroscopy (fNIRS) is an optical brain monitoring technique which uses near-infrared spectroscopy for the purpose of functional neuroimaging. [1] Using fNIRS, brain activity is measured by using near-infrared light to estimate cortical hemodynamic activity which occur in response to neural activity.
NIRS may refer to: Organizations ... Near-infrared spectroscopy; See also. NIR (disambiguation) ... This page was last edited on 4 February 2020, ...
Spectroscopists customarily refer to the spectrum arising from a given ionization state of a given element by the element's symbol followed by a Roman numeral.The numeral I is used for spectral lines associated with the neutral element, II for those from the first ionization state, III for those from the second ionization state, and so on. [1]
The term surface enhanced Raman spectroscopy implies that it provides the same information that traditional Raman spectroscopy does, simply with a greatly enhanced signal. While the spectra of most SERS experiments are similar to the non-surface enhanced spectra, there are often differences in the number of modes present.
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.