Search results
Results from the WOW.Com Content Network
The datasets are classified, based on the licenses, as Open data and Non-Open data. The datasets from various governmental-bodies are presented in List of open government data sites. The datasets are ported on open data portals. They are made available for searching, depositing and accessing through interfaces like Open API. The datasets are ...
The dataset is labeled with semantic labels for 32 semantic classes. over 700 images Images Object recognition and classification 2008 [56] [57] [58] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, Roberto Cipolla RailSem19 RailSem19 is a dataset for understanding scenes for vision systems on railways. The dataset is labeled semanticly and ...
LabelMe is a project created by the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) that provides a dataset of digital images with annotations. The dataset is dynamic, free to use, and open to public contribution. The most applicable use of LabelMe is in computer vision research. As of October 31, 2010, LabelMe has 187,240 ...
The Caltech 101 data set was used to train and test several computer vision recognition and classification algorithms. The first paper to use Caltech 101 was an incremental Bayesian approach to one-shot learning, [ 4 ] an attempt to classify an object using only a few examples, by building on prior knowledge of other classes.
The iris data set is widely used as a beginner's dataset for machine learning purposes. The dataset is included in R base and Python in the machine learning library scikit-learn, so that users can access it without having to find a source for it. Several versions of the dataset have been published. [8]
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Extended MNIST (EMNIST) is a newer dataset developed and released by NIST to be the (final) successor to MNIST. [ 15 ] [ 16 ] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits.
Consider an example data set with four attributes: outlook (sunny, overcast, rainy), temperature (hot, mild, cool), humidity (high, normal), and windy (true, false), with a binary (yes or no) target variable, play, and 14 data points. To construct a decision tree on this data, we need to compare the information gain of each of four trees, each ...