enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D Convolution Animation. Convolution is the process of adding each element of the image to its local neighbors, weighted by the kernel. This is related to a form of mathematical convolution. The matrix operation being performed—convolution—is not traditional matrix multiplication, despite being similarly denoted by *.

  3. Prewitt operator - Wikipedia

    en.wikipedia.org/wiki/Prewitt_operator

    where here denotes the 2-dimensional convolution operation. Since the Prewitt kernels can be decomposed as the products of an averaging and a differentiation kernel, they compute the gradient with smoothing. Therefore, it is a separable filter. For example, can be written as

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    In signal processing, multidimensional discrete convolution refers to the mathematical operation between two functions f and g on an n-dimensional lattice that produces a third function, also of n-dimensions. Multidimensional discrete convolution is the discrete analog of the multidimensional convolution of functions on Euclidean space.

  5. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Convolution has applications that include probability, statistics, acoustics, spectroscopy, signal processing and image processing, geophysics, engineering, physics, computer vision and differential equations. [1] The convolution can be defined for functions on Euclidean space and other groups (as algebraic structures).

  6. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  7. Tomographic reconstruction - Wikipedia

    en.wikipedia.org/wiki/Tomographic_reconstruction

    A set of many such projections under different angles organized in 2D is called a sinogram (see Fig. 3). In X-ray CT, the line integral represents the total attenuation of the beam of X-rays as it travels in a straight line through the object. As mentioned above, the resulting image is a 2D (or 3D) model of the attenuation coefficient.

  8. Gaussian blur - Wikipedia

    en.wikipedia.org/wiki/Gaussian_blur

    Values from this distribution are used to build a convolution matrix which is applied to the original image. This convolution process is illustrated visually in the figure on the right. Each pixel's new value is set to a weighted average of that pixel's neighborhood. The original pixel's value receives the heaviest weight (having the highest ...

  9. Bicubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Bicubic_interpolation

    Bicubic interpolation can be accomplished using either Lagrange polynomials, cubic splines, or cubic convolution algorithm. In image processing , bicubic interpolation is often chosen over bilinear or nearest-neighbor interpolation in image resampling , when speed is not an issue.