Search results
Results from the WOW.Com Content Network
Second-generation programming languages have the following properties: Lines within a program correspond directly to processor commands, essentially acting as a mnemonic device overlaying a first generation programming language. The code can be read and written by a programmer.
Year Name Chief developer, company Predecessor(s) 1960 ALGOL 60: ALGOL 58 1960 COBOL 61 (implementation) : The CODASYL Committee : FLOW-MATIC, COMTRAN 1961 COMIT (implementation)
The second-generation computer architectures initially varied; they included character-based decimal computers, sign-magnitude decimal computers with a 10-digit word, sign-magnitude binary computers, and ones' complement binary computers, although Philco, RCA, and Honeywell, for example, had some computers that were character-based binary ...
A vacuum-tube computer, now termed a first-generation computer, is a computer that uses vacuum tubes for logic circuitry. While the history of mechanical aids to computation goes back centuries, if not millennia, the history of vacuum tube computers is confined to the middle of the 20th century. Lee De Forest invented the triode in 1906.
The success of Zuse's Z3 is often attributed to its use of the simple binary system. [6]: 21 This was invented roughly three centuries earlier by Gottfried Leibniz; Boole later used it to develop his Boolean algebra. Zuse was inspired by Hilbert's and Ackermann's book on elementary mathematical logic Principles of Mathematical Logic.
A third-generation language improves over a second-generation language by having the computer take care of non-essential details. 3GLs are more abstract than previous generations of languages, and thus can be considered higher-level languages than their first- and second-generation counterparts.
This timeline of binary prefixes lists events in the history of the evolution, development, and use of units of measure that are germane to the definition of the binary prefixes by the International Electrotechnical Commission (IEC) in 1998, [1] [2] used primarily with units of information such as the bit and the byte.
2G, or second-generation cellular network technology, marks the transition from analog to digital communication in mobile networks. Defined by the European Telecommunications Standards Institute (ETSI) under the GSM standard, which became the first globally adopted framework for mobile communications, 2G was first commercially launched in 1991 by Radiolinja (now part of Elisa Oyj) in Finland. [1]