enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ATP synthase - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase

    [5] [6] Simplified model of F O F 1-ATPase alias ATP synthase of E. coli. Subunits of the enzyme are labeled accordingly. Rotation engine of ATP synthase. Located within the thylakoid membrane and the inner mitochondrial membrane, ATP synthase consists of two regions F O and F 1. F O causes rotation of F 1 and is made of c-ring and subunits a ...

  3. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    Most useful ATP analogs cannot be hydrolyzed as ATP would be; instead, they trap the enzyme in a structure closely related to the ATP-bound state. Adenosine 5′-(γ-thiotriphosphate) is an extremely common ATP analog in which one of the gamma-phosphate oxygens is replaced by a sulfur atom; this anion is hydrolyzed at a dramatically slower rate ...

  4. ATP synthase alpha/beta subunits - Wikipedia

    en.wikipedia.org/wiki/ATP_synthase_alpha/beta...

    ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases ...

  5. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...

  6. ABC transporter - Wikipedia

    en.wikipedia.org/wiki/ABC_transporter

    A model that describes the conformational changes in the nucleotide-binding domain (NBD) as a result of ATP binding and hydrolysis is the ATP-switch model. This model presents two principal conformations of the NBDs: formation of a closed dimer upon binding two ATP molecules and dissociation to an open dimer facilitated by ATP hydrolysis and ...

  7. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...

  8. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The result is a proton gradient that is used to make ATP via ATP synthase. As in cyanobacteria and chloroplasts, this is a solid-state process that depends on the precise orientation of various functional groups within a complex transmembrane macromolecular structure.

  9. Crista - Wikipedia

    en.wikipedia.org/wiki/Crista

    Septa model – Sjöstrand (1953) suggested that sheets of inner membrane are spanned like septa (plural of septum) through the matrix, separating it into several distinct compartments. [ 2 ] Crista junction model – Daems and Wisse (1966) proposed that cristae are connected to the inner boundary membrane via tubular structures characterized ...