Search results
Results from the WOW.Com Content Network
For example, in the languages C, Java, C#, [2] Objective-C, and C++, (which use the same syntax in this case), the code fragment int x = 0 ; while ( x < 5 ) { printf ( "x = %d \n " , x ); x ++ ; } first checks whether x is less than 5, which it is, so then the {loop body} is entered, where the printf function is run and x is incremented by 1.
In the C programming language, Duff's device is a way of manually implementing loop unrolling by interleaving two syntactic constructs of C: the do-while loop and a switch statement. Its discovery is credited to Tom Duff in November 1983, when Duff was working for Lucasfilm and used it to speed up a real-time animation program.
⎕CR 'PrimeNumbers' ⍝ Show APL user-function PrimeNumbers Primes ← PrimeNumbers N ⍝ Function takes one right arg N (e.g., show prime numbers for 1 ... int N) Primes ← (2 =+ ⌿ 0 = (⍳ N) ∘. |⍳ N) / ⍳ N ⍝ The Ken Iverson one-liner PrimeNumbers 100 ⍝ Show all prime numbers from 1 to 100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 ...
The LOOP language, introduced in a 1967 paper by Albert R. Meyer and Dennis M. Ritchie, [7] is such a language. Its computing power coincides with the primitive recursive functions. A variant of the LOOP language is Douglas Hofstadter's BlooP in Gödel, Escher, Bach. Adding unbounded loops (WHILE, GOTO) makes the language general recursive and ...
If xxx1 is omitted, we get a loop with the test at the top (a traditional while loop). If xxx2 is omitted, we get a loop with the test at the bottom, equivalent to a do while loop in many languages. If while is omitted, we get an infinite loop. The construction here can be thought of as a do loop with the while check in the middle. Hence this ...
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.
The following is pseudocode which combines Atkin's algorithms 3.1, 3.2, and 3.3 [1] by using a combined set s of all the numbers modulo 60 excluding those which are multiples of the prime numbers 2, 3, and 5, as per the algorithms, for a straightforward version of the algorithm that supports optional bit-packing of the wheel; although not specifically mentioned in the referenced paper, this ...